

MARKET ORIENTED **INFRASTRUCTURE MANAGEMENT** EXPLOITING THE POTENTIAL OF THE GBT

JUNE 1, 2018

Annual Event

Mit Shelen

TIPES

We shape the future of intermodal transport

VIII

Strong growth of rail and intermodal on the North South Axis in the past – future depends on competitiveness of rail, given disruptive road trends

Development of transit traffic in Switzerland In tkm, indexed to total traffic in 2010

- Total (Rail and road), Index 2010=100
- Rail traffic optimistic scenario
- Rail traffic pessimistic scenario

Scenarios

- Disruptive technological trends adapted faster on road (autonomous driving, E-trucks, ...)
- Further decrease of punctuality and reliability of rail

Road transportation will continue to benefit from future developments, rail will be subject to further increasing competitive pressure

Trends and their impact on competition between road and rail

Innovation cycles and digitalisation

- Significantly shorter innovation cycles in road transportation (~ 5 years) than in rail transportation (25–30 years)
- Digitalisation drives innovation through newly initialised, holistic solutions and disruptive "assetlight" players

New technologies/ productivity gains for trucks

- Significant productivity gains for trucks through
 - Gigaliner (> 60t and 157m³ volume) with higher transportation volumes and lower transportation cost
 - Autonomous driving and new fuel-efficient engines facilitate further cost reductions
 - Currently banned from transit in CH

Decreasing financial support for combined transport

 Total reduction of financial contributions to combined transport of CHF 120 MM until 2024

Disruptive productivity gains in road transportation to be expected due to innovations and increasing fuel-efficiency

Core upcoming road technology innovations

1. Technically, the solution is available now. Effective launch of production and, hence, industrial maturity, is dependent on approval by national regulatory bodies; Gigaliners with > 60t and 157m3 Volume Source: Oliver Wyman analysis

Going forward, rail, intermodal and road will compete on a wide range of service criteria with reliability and lead time as central differentiating factors

Current service fulfilment capability

Service criteria		Conventional Rail	Intermodal	Road	Expected future relevance for clients ¹
"Your fair market share"	Lead time				2
	Cost of transport		\bigcirc		2
"Basics"	Proactive information				$\overline{\mathbf{a}}$
	Trouble shooting support		\bigcirc		$\overline{\mathbf{\Theta}}$
	Reliability/punctuality				7
	Tracking and tracing		\bigcirc		2
	Capacity avail. for loading		\bigcirc		$\overline{\mathbf{a}}$
"Differentiation"	Time to market		\bigcirc		
	Delivery times				$\overline{\mathbf{a}}$
	Value added services				
	Ease of use		\bigcirc		2

Source: several Oliver Wyman surveys

Current fulfillment level

© Oliver Wyman

Punctuality was identified as a main problem for intermodal transport – only partially due to disruptive events in D, CH and I

Average delays of transalpine intermodal traffic in 2016/2017 (excluding Rastatt effect in Q3 2017)

Almost half of all transalpine intermodal traffic was delayed by 30 mins or more

Significant delays over 3h, accounting for ~25% of all delays, were by numerous diversions, line closures, construction sites and a shortage of conductors

Ramp-up difficulties following the closures of Rastatt and the Luino line in Q3 2017 increased delays in Q4

Source: BAV

Positive effects with the opening of the Gotthard-Base-Tunnel (GBT), but the market on the North South axis is over 900 km on average

Majority of relations on NS-axis lead through GBT

	Modelled	
Relation to Busto A. / Gallarate	lead time (in h) ¹	Distance (in thd km)
Taulov	28	1,5
Zeebrugge	25	1,3
Antwerpen Combinant	24	1,1
Antwerpen HTA Quai	24	1,1
Rotterdam RSC	22	1,1
Venlo	20	0,9
Duisburg Ruhrort Hafen	19	0,9
Duisburg Rhein. Dkt	19	0,9
Hannover-Linden-Hafen	18	1,0
Koeln Eifeltor	16	0,8
Ludwigshafen KTL	12	0,6
Singen	8	0,3
Basel Weil	6	0,3
Average	19	0,9

GBT effects

- Time savings of 45 minutes on average were achieved through:
 - Reduction of total distance travelled by 30km
 - Decreased waiting times between Basle and Bellinzona
 - Less stops for changing and adding additional pushing locomotives

Cost savings potentials were realized through:

- Reduction of maintenance
 expenditures
- Reduction of the number of locomotives
- Cost rationalization effects due to the improvements

1. Modelled lead time 2017 in h, Aarau and Birrfeld not modelled due to inclusion in Basel-Gallarate trains, Hamburg Billwerder not modelled due to inclusion in Hannover-Gallarate trains, Herne, Rotterdam RSC and Singen only routes with S. terminal Gallarate modelled, Source: Hupac, Oliver Wyman

Modelled lead time may diverge from observed lead time

In fact, the timetable comparison 2017 vs. 2016 shows, that the positive GBTeffect is almost annihilated by deteriorations on other sections

Development total lead time 2016–2017

Sum of total lead time of all 50 trains in sample, in h

1. Approximation based on avg. acceleration between Basel and Gallarate 2016–17 of ca. 45min (50x45min \cong 38.5h), 2. Approximation based on avg. increase of waiting time in transition point Basel SBB of ca. 21min (50x33min \cong 17.5h), 3. Derivation based on total lead time measured 2016/2017, avg. GBT effect and avg. waiting time increase in Basel SBB, 4. Approximation based on avg. estimated acceleration between Locarno and Lugano from 2020 of ca. 33min (50x33min \cong 18.3h)

Source: Hupac, Oliver Wyman analysis

Large variability of average speed achieved both across and within section. Lead times show reduction potential across sections

Track sections on NS-axis

Average speed per section

Up to 60min of lead time reductions can be achieved across sections

Source: Hupac, Oliver Wyman

Lead times for the relation Mannheim – Basel show significant variability

Distribution of lead time

No. of trains¹ per week per lead time in h

Decreasing waiting times before border crossings as well as avoiding unscheduled stops during transit would reduce variability of lead times

Note: No. of trains per week depends on observations assigned to a certain operating point or section. Not all trains on a certain relation operate on same route. Values rounded to decimals. Section analysis may include trains operating on NS-axis, but not through GBT., 1. Multiple trains per observation, i.e. with same lead time Source: Hupac, Oliver Wyman

Waiting times across operating hubs exhibit large variability – with some showing significant potential for reduction

Modelling-relevant operating points on NS corridor

Several major hubs show potential for waiting time reduction (exemplary)

1: Waiting time reduction achieved through: Reduction and optimisation of buffering, while ensuring quality levels, optimised planning of loco and driver changes, path harmonisation to reduce waiting time optimised terminal planning and operations to reduce necessary stops due to closed terminals Source: Hupac, Oliver Wyman

Acceleration potential of approx. 15% was identified – Realisation requires joint efforts by all parties to achieve improvements even before 2021

Breakdown of modelled potential for transport time reduction Total¹ modelled transport time 2017 vs. 2021+ estimation, in h

1. For all 222 trains per week included in model, 2. Model based, 3. Clear potential due to extensive infrastructure investments to become fully effective after finalisation of 4m-corridor works (including Ceneri base tunnel), reduction of lead times throughout Switzerland due to leverage of full GBT-effect post construction activity in 2020 Source: Expert interviews, Hupac, Oliver Wyman analysis 12 © Oliver Wyman

The current infrastructure management process is characterized by four main deficiencies

Representation of current infrastructure management process and consequential difficulties

Market requirements

1. Limited market conformity and market focus

- Insufficient consideration of market capacity requirements
- Path requests are submitted before demand pattern is still clear
- Different standards, e.g. train length Source: Rail Net Europe, Expert interviews, Hupac, Oliver Wyman

Operative elements

2. Path coordination

Domestic focus leads to path-fractures at national borders and lack of continuous path capacity along main corridors

3. Construction activity

Exacerbated impact of interruptions through lack of coordination in network expansion and construction planning

4. Day-to-day operations

Unplanned stops during transit and longer waiting times resulting in increasing lead times

Integrated corridor management Rhine-Alpine from planning to operations, in order to exploit the GBT productivity potential and fulfill market requirements

Examples of levers for improvement in current corridor management

Coordinated construction activities

- Corridor view: minimizing end-toend impact
- Coordination of short-term interruptions
- Bottleneck centred planning

Harmonized operating models

- Harmonisation of standards
- Alignment of prioritisation and dispatching rules

Coordinated long-term planning

- Cross-border path planning
- International coordination on development of network
 and corridor including terminals

Fro ma

From domestic to corridor management

- Implement centralised international corridor management
- Implement international rail contingency and IM / RU crisis management
- Ensure short-term single track re-start on EU corridors

Coordinated management of terminal capacities along the axis as an integral part of an efficient end-to-end corridor management

Terminals across NS-corridor show different capacity utilizations

Terminal groups	capacity ¹	Future capacity ²	Notes
1 Belgium	- •	+	Expansion of rail infrastructure around the port of Zeebrugge
2a Rotterdam continental	-	•	No new projects
2b Rotterdam maritime	- •	+	No new projects
3 West-Germany & Rhine Area	-	•	Projects outstanding
Central-Germany & Main Area			No new projects
5 CH North			Projected terminal Gateway Basel Nord (trimodal handling facility)
6 Italy North			Several projects (E.g.: expansion of handling facilities in Milano and Busto / Gallarte in progress)
Capacity available		limited	Capacity highly limited —> Trend

1. Estimation based on Hupac expert input, 2. Under consideration of traffic development Source: Hupac, Oliver Wyman

All involved parties – Rail freight operators, infrastructure providers and Hupac – can benefit from improved operations on the North-South corridor

Source: Oliver Wyman © Oliver Wyman

